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Abstract The dynamics of coupled populations have
mostly been studied in the context of metapopulation via-
bility with application to, for example, species at risk.
However, when considering pests and pathogens, eradica-
tion, not persistence, is often the end goal. Humans may
intervene to control nuisance populations, resulting in recip-
rocal interactions between the human and natural systems
that can lead to unexpected dynamics. The incidence of
these human-natural couplings has been increasing, hasten-
ing the need to better understand the emergent properties
of such systems in order to predict and manage outbreaks
of pests and pathogens. For example, the success of the
growing aquaculture industry depends on our ability to
manage pathogens and maintain a healthy environment for
farmed and wild fish. We developed a model for the dynam-
ics of connected populations subject to control, motivated
by sea louse parasites that can disperse among salmon
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farms. The model includes exponential population growth
with a forced decline when populations reach a threshold,
representing control interventions. Coupling two popula-
tions with equal growth rates resulted in phase locking
or synchrony in their dynamics. Populations with different
growth rates had different periods of oscillation, leading
to quasiperiodic dynamics when coupled. Adding small
amounts of stochasticity destabilized quasiperiodic cycles
to chaos, while stochasticity was damped for periodic or
stable dynamics. Our analysis suggests that strict treatment
thresholds, although well intended, can complicate parasite
dynamics and hinder control efforts. Synchronizing pop-
ulations via coordinated management among farms leads
to more effective control that is required less frequently.
Our model is simple and generally applicable to other sys-
tems where dispersal affects the management of pests and
pathogens.
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Introduction

As the global human population grows, there is an increas-
ing need to understand how interactions between human
and natural systems alter ecosystems and the services they
provide (Millennium Ecosystem Assessment 2005). Social
and ecological systems have traditionally been studied sep-
arately, but their integration as coupled human and natural
systems (CHANS) can reveal unexpected dynamics due to
nonlinearities and thresholds in the way that humans and
ecosystems interact (Liu et al. 2007). CHANS can exhibit
emergent properties, not present in isolated human or nat-
ural systems but resulting from the interactions between
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them. There is a need to integrate studies of human actions
with the natural dynamics of populations and communities
to understand relevant feedbacks and develop effective pol-
icy that reduces human degradation of essential ecosystems
services.

The natural dynamics of pests and pathogens have been
of interest to scientists for some time, due to the economic
importance of agricultural pests (Oerke 2006) and human
cost of transmissible diseases (e.g., Keeling and Gilligan 2000).
The role of dispersal among populations in hindering con-
trol efforts has long been recognized (e.g., Levins 1969).
Theoretical models of coupled populations have shown that
if neighboring populations fluctuate out of phase, such that
high abundances at one location correspond to low abun-
dances at another, dispersal can increase the probability of
persistence via the rescue effect (Brown and Kodric-Brown
1977; Kendall and Fox 1998). The rescue effect is often
thought of as beneficial in the context of population viability
of endangered species, but in the context of disease, disper-
sal among local populations with asynchronous dynamics
may hinder efforts to eradicate disease (e.g., Bolker and
Grenfell 1996). Mathematical models (e.g., Liebhold et al.
2004; Holt and McPeek 1996; Hastings 1993) and observa-
tional data (e.g., Ranta et al. 1995; Steen et al. 1996) have
suggested that dispersal will tend to synchronize local pop-
ulations. Synchronized populations are more susceptible to
extinction because stochastic events or human intervention
can cause catastrophic losses when all populations are at low
abundance, with little opportunity for recolonization. Para-
doxically, dispersal could therefore help or hinder efforts to
control disease in metapopulations depending on whether
dispersal results in synchronized pathogen dynamics, or the
rescue effect (Abbott 2011).

Treatments with chemotherapeutants and wildlife culls
(e.g., to reduce disease transmission) are examples of con-
trol efforts that result in an immediate decline in the
unwanted populations, but resurgence may be swift if
nearby populations persist. The optimal allocation of con-
trol effort among subpopulations may depend on the level
of connectivity and relative growth rates of the populations.
For example, in control of the yellow legged herring gull,
a nuisance species in the western Mediterranean, the mag-
nitude of the cull and life stage to be targeted depends
on the dispersal rate (and relative growth rates) among
gull populations (Brooks and Lebreton 2001). Tuberculo-
sis in New Zealand possums can be controlled by culling
infected individuals with poison baits, but the effective-
ness of this control depends on the timing of application
and spatial configuration of habitat patches (Fulford et al.
2002). In general, asynchrony in the dynamics of disease
among host local populations likely decreases the probabil-
ity of successful eradication (Earn et al. 1998). Indeed, it has
been proposed that efforts to eradicate measles on a global

scale were hampered after vaccination programs of the late
1960s inadvertently resulted in the decorrelation of measles
epidemics in UK cities (Bolker and Grenfell 1996).

The motivation for this study came from parasite dynam-
ics in open-net aquaculture; a coupled human and natural
system where the eradication of pathogens has proved dif-
ficult. The rapid expansion of aquaculture (FAO 2014)
has resulted in changes to coastal ecosystems including
the emergence of disease (Walker and Winton 2010) and
transmission of pathogens between farmed and wild fish
(Heggberget et al. 1993). In regions where farmed and wild
fish coexist, the health of the system depends on effective
management of disease in farmed fish (Peacock et al. 2013;
Tompkins et al. 2015). Connectivity among populations in
the marine environment is typically higher than in terrestrial
systems (McCallum et al. 2003), and dispersal of pathogens
among host populations can complicate disease control.

In particular, parasitic copepods known as sea lice or
salmon lice, predominantly Lepeophtheirus salmonis and
Caligus spp., have been a persistent problem in salmon
aquaculture, costing millions of dollars in treatment and
reduced feed conversion ratios, negatively impacting fish
health, and damaging public perception of farmed salmon
(Costello 2009). Many approaches have been taken to min-
imize sea louse outbreaks, including biomass restrictions to
limit host density, strategic siting of farms, the use of cleaner
fish that prey on sea lice, and the application of chemother-
apeutants (Rae 2002; Brooks 2009). Sea louse populations
on salmon farms within a region are connected via the dis-
persal of free-living larvae (Adams et al. 2012), and studies
have shown that critical host density thresholds for sea lice
exist at regional scales (Frazer et al. 2012; Jansen et al.
2012; Kristoffersen et al. 2013). It has been estimated that
28 % of infections are due to the influx of larvae from
neighboring farms (Aldrin et al. 2013). This connectivity
among farms affects the growth of sea louse populations on
any given farm and the efficacy of treatments. Furthermore,
frequent and less effective use of chemotherapeutants may
facilitate the evolution of resistance in sea lice (Aaen et al.
2015), which is a major challenge facing the aquaculture
industry (Igboeli et al. 2014). Coordination of management
among farms may be a key in effectively managing sea lice
(Kristoffersen et al. 2013), as well as the spread of other
pathogens. Many studies have focused on statistical analy-
ses of monitoring data to uncover the relationships among
farms (e.g., Jansen et al. 2012; Aldrin et al. 2013; Rogers et
al. 2013; Revie et al. 2002) but much can be learned from
applying more general theoretical models of population and
disease dynamics (e.g., Frazer et al. 2012).

In this paper, we develop a simple model for the dynam-
ics of two populations connected by dispersal, where each
population is subject to external control when it reaches a
threshold density. The model complements previous work
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examining sea louse populations on individual salmon farms
(Krkošek et al. 2010; Rogers et al. 2013) and within a region
(Jansen et al. 2012; Aldrin et al. 2013) to explicitly examine
how connectivity between parasite populations on adacent
farms can alter the timing and frequency of treatments. This
work also builds on our general theoretical understanding of
how dispersal (Hastings 1993; Goldwyn and Hastings 2011;
Dey et al. 2015; Kendall and Fox 1998) and intervention
(Chau 2000; Sah et al. 2013) affect the dynamics of cou-
pled populations. The model was motivated by sea lice on
farmed salmon but has general applicability to other sys-
tems where dispersal affects control, such as in agricultural
pests of crops within a region (Ives and Settle 1997), and
transmissible diseases in wildlife (Tompkins et al. 2015) and
humans (e.g., Bolker and Grenfell 1996).

Methods

A simple model for growth and control

Analyses of sea louse population dynamics on isolated
salmon farms suggest that parasite populations grow expo-
nentially in the absence of treatment (Krkošek et al. 2010;
Rogers et al. 2013). Exponential growth is not unique to sea
lice and has been observed in birds (Van Bael and Pruett-
Jones 1996), mammals (Silva 2003), and insects (Birch
1948) and has been used to describe dynamics of other
agricultural pests (e.g., Samways 1979). Although negative
density dependence will regulate populations at some point,
management intervention in the case of pests and parasites
may prevent populations from reaching such high densities.
Thus, although the following model was motivated by sea
louse parasites on salmon farms, it likely has broad appli-
cability and may inform management of other pests and
parasites. In developing the model, we refer to populations
in adjacent patches rather than parasites on adjacent salmon
farms to maintain this generality.

The dynamics of two populations that are continuously
coupled by dispersal are described by[

u

v

]′
=

[
ruu ruv

rvu rvv

] [
u

v

]
, (1)

where u is the population density in patch one, v is the pop-
ulation density in patch two, rii is the internal growth rate
of population i where i = u or v and rij is the connectiv-
ity probability from population j to population i. We refer
to the total growth rate of population i = u or v as the row
sum of internal growth and connectivity: rii + rij . The solu-
tions for u(t) = fu(t, u0, v0) and v(t) = fv(t, u0, v0) are
given in Appendix A.

We included control treatments by forcing a reduction
in a population when it reached the threshold abundance

of Nmax. Many countries, including Norway, Ireland, the
USA, and Canada, require salmon farms to treat their fish
with chemotherapeutants when a threshold sea louse abun-
dance is reached, but this threshold may vary among regions
(Brooks 2009). For our simulations, we chose Nmax = 3
motile lice per fish, based on guidelines in Pacific Canada
that recommend treatment when farmed salmon have an
average of three lice per fish (British Columbia Ministry of
Agriculture and Lands 2005), but the value of the thresh-
old is arbitrary for the qualitative analysis we perform here.
Observations suggest that chemotherapeutants may kill up
to 95 % of motile sea lice on treated farmed salmon (Lees
et al. 2008), although treatment efficacy may be lower in
many regions and is undoubtedly changing (Aaen et al.
2015). We assumed that treatments were effective, and when
either u(t) or v(t) exceeded Nmax, we modeled a treat-
ment of that population by forcing the dynamics to reset
with the initial condition for the treated population being
a 95 % reduction from the threshold (i.e., Nmin = (1 −
0.95)Nmax) and the initial condition for the untreated pop-
ulation being equal to the density prior to treatment of the
other population. For example, starting with initial popu-
lation densities uk and vk at t = 0, if u(t) reaches the
threshold Nmax at time t = Tu, the system would be reset
with t = 0 and initial conditions uk+1 = Nmin and vk+1 =
fv(Tu, uk, vk). The subscript k here represents the treatment
number counted across both populations. In the following
section, we develop a discrete-time model that describes the
population density at treatment k+1 based on the population
density at treatment k.

Discrete-time treatment dynamics

We aimed to understand the conditions under which the
populations will become synchronized, settle into a regu-
lar pattern of alternating treatments, or have unpredictable
treatment timing. To this end, we reduced the dimension-
ality of the system while retaining key properties (Schaffer
1985) by deriving a discrete-time map for the population
density in a focal population when the other population is
treated. This approach is related to “peak to peak” dynam-
ics of time series data in which past maxima are used
to predict future peaks in time series oscillations (e.g.,
Rinaldi et al 2001). A similar approach is also often used
to reduce the dimensionality of a system of three or more
differential equations by plotting successive points where
the three-dimensional phase dynamics pass through a two-
dimensional plane, called a Poincaré section (e.g., Hastings
and Powell 1991; Schaffer 1985).

Given the initial population densities in the two patches,
we solved Eq. 1 for the time, Tu, until population u reaches
the treatment threshold (Appendix A) and the time, Tv , until
population v reaches the treatment threshold. We calculated
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T̃ = Tu − Tv , where T̃ < 0 indicates that the treatment of u

will happen next, and T̃ > 0 indicates that the treatment of
v will happen next. The population densities after the next
treatment k + 1 are therefore[

u

v

]
k+1

=
(

1 − H(T̃ )
) [

Nmin

fv

(
Tu, uk, vk

)
]

︸ ︷︷ ︸
u is treated

+ H(T̃ )

[
fu

(
Tv, uk, vk

)
Nmin

]

︸ ︷︷ ︸
v is treated

, (2)

where H(T̃ ) is the Heaviside step function that equals zero
when T̃ < 0 and one otherwise. We used the dynamical sys-
tem described by Eq. 2 to construct a return map that takes
the u when v is initially treated, u∗, and returns u the next
time v is treated, φ(u∗). We refer to φ(u∗) as the popula-
tion density (in patch one) at re-treatment (of patch two).
We show in Appendix B that the general equation for this
return map is

φ(u∗) = H(T̃0) fu

(
Tv0, u∗, Nmin

)
︸ ︷︷ ︸

m=0

+
[ ∞∑

m=1

H(T̃m)

m−1∏
n=0

[1 − H(T̃n)]
]

fu

(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

,

(3)

where treatment of u occurs m times before v is treated
again. The time between treatment m− 1 and the next treat-
ment of v is denoted Tvm, and T̃m = Tum − Tvm. The value
of m depends on the relative growth rates of the two pop-
ulations and the magnitude of connectivity. The values of
Tum and Tvm cannot be solved for explicitly (Appendix A);
therefore, we simulated the dynamics using a recursive
algorithm to obtain the shape of φ(u∗) (Appendix C).

Parameter sensitivity

We investigated the dynamics of the return map for a lim-
ited number of parameter combinations with each growth
rate constrained between zero and two. A comprehensive
description of the dynamics of the return map under all
parameter combinations was impossible because the return
map had to be simulated, so we focused on results from four
scenarios that describe parameter changes that might occur
in networks of salmon farms (Table 1). First, we considered
a scenario where the internal growth rates were constant and
equal at ruu = rvv = 1.00 and connectivity increased from
0.01 to 1.00 in increments of 0.01 (ruv = rvu = rij , scenario

Table 1 Summary of scenarios for how increasing connectivity
affects dynamics

Scenario Growth rates

u internal v internal from u to v from v to u

ruu rvv rvu ruv

A 1.00 1.00 0.01 → 1.00a 0.01 → 1.00a

B 1.00 1.00 0.01 → 1.00 0.01

C 1.00 0.50 0.01 → 1.00 0.01 → 1.00

D 1.00 0.50 0.01 → 1.00 0.01

aUnder scenario A, we considered connectivity increasing to 2.00
when assessing the frequency of treatments.

A). This scenario could represent two salmon farms being
brought closer together, increasing exchange of parasites
between them. Second, we considered increasing rvu from
0.01 to 1.00 but connectivity in the other direction constant
at ruv = 0.01 (scenario B). This scenario could represent an
increase in the advection of larvae from one farm to another.
The third scenario had connectivity equal and increasing as
in scenario A, but u had twice the internal growth rate as v

(ruu = 1.00, rvv = 0.50, scenario C). Similarly, in scenario
D, u had twice the internal growth rate as v, but rvu increas-
ing from 0.01 to 1.00. Different internal growth rates could
represent different host population sizes or environmental
conditions affecting growth on the two farms.

In each scenario, for each value of the appropriate control
parameters (i.e., rvu, and ruv in scenarios A and C; Table 1),
we simulated the return map over 2000 iterations starting
at u∗

0 = 2.7. We constructed a bifurcation diagram by plot-
ting the values of φ(u∗) for the last 500 iterations, over
the value of the control parameter. We present the results
for u∗

0 = 2.7, but we examined the bifurcation diagrams
starting from several values of u∗

0 to check that the long-
term dynamics were not dependent on the initial conditions
(Online Resource, Fig. S1).

We also considered the long-term frequency of treat-
ments over increasing connectivity between populations.
To calculate the frequency of treatments, we first iterated
the return map 500 times starting at u∗ = 2.7 to remove
transient dynamics and then simulated the dynamical sys-
tem given by Eq. 2 for 100 treatments, where treatments
were counted across both populations. If the two popula-
tions were treated at the same time, we considered it two
treatments. The frequency of treatments was then calculated
as 100 divided by the time taken to reach 100 treatments.
To examine how connectivity affects the frequency of treat-
ments independent of overall increases in the growth rates,
we also considered a variation on scenario A in which the
internal growth rate declined as connectivity increased such
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that rii = 1 − rij and the total growth rates to populations
remained constant (Online Resource).

Testing for chaos

Under certain parameter values, the numerically calculated
return map given by Eq. 3 had a discontinuity at the point
where u was treated m times or m + 1 times, depend-
ing on the population density u∗ at the first treatment of v

(see “Results”). This discontinuity resulted in cyclic behav-
ior that was difficult to classify by numerical simulations
as periodic or chaotic (Galvanetto 2000). Chaos is extreme
sensitivity to initial conditions and can be classified by
calculating the rate of divergence between two trajectories
that are initially close (Hastings et al. 1993). This rate is
known as the Lyapunov exponent λ where εn = ε0 eλn,
ε0 << 1, and εn is the difference between a perturbed and
fiducial trajectory after n iterations of the return map. Posi-
tive exponents indicate that two trajectories will diverge, and
therefore, the dynamics are sensitive to the initial condition,
characteristic of chaos (Sprott 2003; Hastings et al. 1993).

To determine if the return map lead to chaotic dynamics
under the scenarios we considered, we numerically calcu-
lated the Lyapunov exponent for all parameter combinations
(Table 1) as

λ =
104∑
n=1

log

( |εn|
ε0

)
. (4)

For discontinuous return maps such as ours, Eq. 4 is not
valid if the fiducial and perturbed trajectories project onto
different pieces of the return map (Galvanetto 2000). To
avoid this problem, we chose a small initial difference
between the trajectories of ε0 = 10−8. At each iteration of
the return map, we readjusted the two trajectories bringing
them back together along the line of separation such that the
difference between them was ε0, with the sign of the differ-
ence equal to the sign of εn−1 (Sprott 2003, p. 116–117):

εn = φ

(
φn−1(u∗) + εn−1

|εn−1|ε0

)
− φn(u∗) (5)

where φn(u∗) represents the nth iteration of the fiducial tra-
jectory (i.e., φ2(u∗) = φ(φ(u∗))). This correction made it
very unlikely that the two trajectories would project onto
different pieces of the return map, as the difference between
them remained relatively small. In all our simulations, we
verified that εn << 1, suggesting that the two trajectories
had projected on to the pieces of the return map.

In the numerical calculation, the value of the Lyapunov
exponent may depend on the choice of u∗

0 (Earnshaw 1993),
so we repeated the calculation of Eq. 4 for three randomly-
chosen values between Nmin and Nmax. For each starting
value, we iterated the map 200 times to remove transient

dynamics and then used the subsequent 10 000 iterations
in the calculation of λ (Sprott 2003). We report the mean
value of λ over the three values of u∗

0 for each value of
connectivity described in Section “Parameter sensitivity.”

Stochasticity

Environmental stochasticity may influence the growth of
populations, as is the case for sea louse populations on
salmon farms (Aldrin et al. 2013; Rogers et al. 2013).
We added stochasticity to the return map and evaluated its
influence on the long-term dynamics. At each iteration, we
multiplied φ(u∗) by a log-normal distribution with mean
one and standard deviation on the log scale of s = 10−2

(Hilborn and Mangel 1997). We compared the stochastic
dynamics for parameters that corresponded to a quasiperi-
odic cycle with a Lyapunov exponent close to zero in the
deterministic model versus those that produced periodic
dynamics or had a single equilibrium with a Lyapunov
exponent that was relatively large and negative in the deter-
ministic model. We examined 200 iterations of the return
map for two trajectories: one fiducial trajectory starting
at u∗

0 = 2.7 and a second perturbed trajectory initially
separated by a small distance ε0 = 10−8 from the fidu-
cial trajectory. We compared the difference between these
trajectories over increasing iterations and also calculated
the Lyapunov exponent, with and without stochasticity in
the model. In calculating the Lyapunov exponent for the
stochastic return map, we used an independent sequence of
log-normal values for the fiducial and perturbed trajectories.
To ensure the value of λ in the stochastic model was not
sensitive to the particular log-normal random values in the
simulation, we repeated the calculation 50 times and report
the mean and range.

Results

Simulations of simple model

Simulations of the model predicted that for two isolated
populations (i.e., rij = 0 ∀ i �= j ), each population will
oscillate with treatments occurring at regular intervals. The
frequency of treatments was dictated by the internal popu-
lation growth rate rii , with higher growth rates resulting in
more rapid resurgence of the population after treatment and
therefore a higher frequency of treatments.

When we coupled the two populations, the dynam-
ics were more complex. Simulations displayed a range of
behavior including alternating treatments (i.e., phase lock-
ing; Fig. 1a), synchrony between the populations (Fig. 1b),
or seemingly chaotic dynamics (Fig. 1c; Table 2). To bet-
ter understand this complex behavior, we considered a
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Fig. 1 Three types of behavior observed were observed for connected
populations subject to control: a alternating treatments of populations
for equal growth rates of the two populations and connectivity less
than the internal growth rates (rij /rii = 0.1), b synchrony in the
population dynamics between patches for equal growth rates of the
two populations and connectivity greater than the internal growth rates

(rij /rii = 10), and c apparently chaotic dynamics where the treatment
timing was unpredictable for unequal growth rates of the two popu-
lations. Initial conditions were u0 = 2.7 (black line) and v0 = Nmin
(gray line). The upper and lower horizontal dashed lines indicate
the treatment threshold and abundance of parasite immediately after
treatment, respectively

one-dimensional discrete-time return map describing the
change in u in between treatments of v.

Discrete-time treatment dynamics

For two populations that have identical growth rates but low
connectivity, the return map had a stable equilibrium in the
open interval (Nmin, Nmax) (the exact value depended on
the level of connectivity) and unstable equilibria at Nmin

and at Nmax. This dynamical behavior is termed phase lock-
ing because the two populations had the same period but
their dynamics were shifted out of phase by a fixed amount
(Becks and Arndt 2013). The consequence was alternating
treatments of u and v, with a stable equilibrium for the pop-
ulation density u whenever v was treated (Figs. 1a and 2a).
If both populations were treated at the same time, u was
exactly at the unstable equilibrium. In this case, the two pop-
ulations remained synchronized because the period of their
oscillations was identical.

If the stable equilibrium was at the treatment threshold
Nmin or Nmax, then the dynamics of the two populations
tended towards synchrony. From our limited investigation
of parameter space, this was observed when connectivity
between the populations was equal and greater than the
internal growth rates of the populations (i.e., rij = rji >

rii = rjj ; Table 2). Synchrony also occurred if the internal
growth rates were unequal, but the total growth rates of the
two populations were equal (i.e., ruu + ruv = rvv + rvu)
and one population had a lower growth rate and higher con-
nectivity to the other population. In this case, the population
with higher connectivity became entrained by the dynamics
of the “source” population.

A third type of behavior occurred when the total growth
rates of the populations were not equal. In this case, the two
populations oscillated with different periods. There was a
discontinuity in the return map where u went from being
treated once to twice (or two to three times, depending on
the relative growth rates) before v was treated (Fig. 2c).

Table 2 Summary of
parameter values under which
different dynamics were
observed

Internal growth rate Connectivity Behavior Figure

ruu = rvv (ruv = rvu) ≤ (ruu = rvv) Phase locking Fig. 2a

(ruv = rvu) > (ruu = rvv) Synchrony Figs. 2b and 4a

ruv �= rvu Cycles

ruu �= rvv ruv = rvu; incl. ruv = rvu = 0 Cycles Fig. 2c

(ruu + ruv) = (rvu + rvv) Synchrony or phase locking Figs. 4b and S8

Else Phase locking or cycles Fig. 2c
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Fig. 2 Return maps for the population density u at re-treatment of
v (φ(u∗)) over increasing initial population density, u∗. a For low
connectivity, there was a stable equilibrium in (Nmin, Nmax) (black
point) and unstable equilibria at Nmin and Nmax (white points). b When
connectivity was higher than internal growth, there was an unstable
equilibrium in (Nmin, Nmax) and stable equilibria at Nmin and Nmax,
and the two populations synchronized. c For unequal connectivity, u

was treated m or m+ 1 times before v was treated, yielding a disconti-
nuity in the return map that resulted in cycles. The relative growth rates
in each panel correspond to those in Fig. 1. The gray lines show 30
iterations of the return map (i.e., cobwebbing) from u∗ = 2.7, ending
at the gray point

This discontinuity resulted in periodic or seemingly chaotic
behavior. Unlike in phase locking or synchrony, the popu-
lation density u was not the same each time v was treated
(Fig. 1c).

Parameter sensitivity

Increasing the connectivity between two patches resulted
in changes to the long-term values of φ(u∗), the popu-
lation density at re-treatment (Fig. 3 and Fig. S1). Some
of these changes happened abruptly when the connectivity
crossed a threshold (Fig. 3c, d), while others happened grad-
ually (Fig. 3a). When the two populations had equal internal

growth rates and equal connectivity, increasing the connec-
tivity lead to increasing population density at re-treatment,
until connectivity equalled the internal growth rates (sce-
nario A in Table 1; Fig. 3a). At that point, the dynamics
were phase-locked such that the population density at re-
treatment was always the initial population density (i.e.,
(φ(u∗) = u∗) ∀ u∗; see Online Resource Figs. S2–S5 for
illustrative animations).

When connectivity was increased from u to v only (e.g.,
scenario B in Table 1), the return map had a discontinuity
because the total growth rate of v was higher than that of
u. In that case, we observed periodic dynamics, the sim-
plest being a two-point cycle that occurred near rvu = 0.8
(Fig. 3b). In these two-point cycles, after the initial treat-
ment of v, u will be treated once, then after the next
treatment of v, u will be treated twice. This cycle repeats
itself resulting in a pattern of treatments v, u, v, u, u, v, u,
v, u, u, etc., with u having a lower population density at the
treatment of v if u has been treated twice since the previous
treatment of v.

When the internal growth rates of the populations were
not equal (i.e., scenarios C and D in Table 1), the dynam-
ics tended to be cyclic (Fig. 3c, d). However, abrupt changes
from cyclic dynamics to stable points occurred as connectiv-
ity was increased to the point where the return map touched
or crossed the 1:1 line. For example, in scenario D, when
rvu neared 0.51, the dynamics tended towards phase lock-
ing (Fig. S5). As connectivity increased from rvu = 0.35
to rvu = 0.51, the stable point approached Nmin and the
magnitude of the rescue effect decreased because u had a
lower population density on treatment of v. When the total
growth rates were exactly equal (i.e., rvu = 0.51 such that
(ruu + ruv) = (rvu + rvv)), the two populations became
synchronized (Fig. 3d; Table 2).

Increasing the connectivity between the patches did not
necessarily result in a monotonic increase in the frequency
of treatments (Fig. S6). For illustration, we focus on the
frequency of treatments under scenario A, but with connec-
tivity increasing to ruv = rvu = 2.00, and on scenario
D with connectivity between rvu = 0.35 and 0.52. In
these scenarios, the internal growth rates were held constant
(Table 1). Thus, we expected that the frequency of treat-
ments would increase with increasing connectivity because
the the total growth rate to the populations was increasing.
However, we observed a sharp decline in the frequency of
treatments in scenario A when connectivity exceeded the
internal growth rate (Fig. 4a). In scenario D, the frequency
of treatments declined over the region of phase locking
(see Fig. 3d) as the stable point appraoched Nmin, reduc-
ing the impact of the rescue effect. The minimum frequency
of treatments occurred where populations became synchro-
nized at rvu + rvv = ruv + ruu (i.e, rvu = 0.51, Fig. 4b).
In the Online Resource, we also considered a decline in the
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Fig. 3 Long-term values of φ(u∗) and the Lyapunov exponents λ

under four different scenarios for changing connectivity (a–d; scenar-
ios A–D in Table 1). In calculating long-term values, for each value
of connectivity we plotted the last 500 of 2000 iterations starting at

u∗
0 = 2.7 (see Fig. S1 for results with other starting values). Red

and blue points in (c) indicate the parameter values for stochastic
simulations in Fig. 5. Online version in color

internal growth rate as connectivity increased such that rii =
1 − rij and the total growth rates to populations remained
constant in order to examine how connectivity affects the
frequency of treatments independent of overall increases in

the growth rates. These simulations also showed a decrease
in the frequency of treatments when populations became
synchronized, and frequency of treatments remained low as
connectivity increased further (Fig. S7).
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Fig. 4 The frequency of treatments over increasing connectivity. a
In scenario A, the frequency of treatments drops when the connectiv-
ity exceeds internal growth rates (dotted line) and populations become
synchronized (Table 2), but rises again as connectivity increases fur-
ther due to increasing total growth rate. b In scenario D, the frequency
of treatments declines over the region of phase locking (see Fig. 3d)
as the stable point approaches Nmin, reducing the impact of the rescue
effect. The minimum frequency of treatments occurs where popula-
tions are synchronized at rvu +rvv = ruv +ruu (i.e., rvu = 0.51, dotted
line; Table 2)

Testing for chaos

The time series of population density appeared chaotic when
the period of the population cycles in the two patches

was different (Fig. 1c). The bifurcation diagrams showed
large regions of parameter space that had potentially chaotic
dynamics (Figs. 1c and 3c–d). However, the Lyapunov
exponent was not greater than zero in any of the scenar-
ios (Fig. 3c–d), indicating the dynamics were not chaotic.
Instead, the dynamics of two populations with different
internal periods of oscillations appeared quasiperiodic. For
periodic cycles, after iterating the return map a finite num-
ber of times, we returned to the exact value at which we
started (e.g., Fig. 5b). Quasiperiodic cycles are differenti-
ated from periodic cycles by cobwebbing the return map;
over several treatments of v, φ(u∗) returned to the original
branch of the return map very near to the starting point but
not exactly at the starting point, such that the dynamics were
shifted slightly (e.g., Fig. 5d). We note that a precise distinc-
tion between quasiperiodic and periodic dynamics is limited
by the the number of times we could numerically iterate the
return map.

Stochasticity

Small amounts of stochasticity added to the return map
tended to shift quasiperiodic dynamics towards chaos such
that two population initially close had very different pop-
ulation densities after 200 iterations. However, when the
dynamics were periodic, the stochasticity was damped
such that the fiducial trajectory and the perturbed trajec-
tory remained relatively close over 200 iterations of the
return map (Fig. 5a). A small change in rvu from 0.72
to 0.71 in scenario C caused a transition from periodic to
quasiperiodic dynamics (Fig. 5b, d). In the quasiperiodic
case, the two trajectories drifted apart as the stochasticity
accumulated (Fig. 5c). For scenario D, when rvu was

Fig. 5 The effect of
stochasticity differed with small
changes in parameters. The
difference between two
trajectories initially separated by
ε0 remained small for
parameters under which the
deterministic model showed
periodic dynamics (a), but
increased for parameters under
which the deterministic model
showed quasiperiodic dynamics
(c). The corresponding
deterministic return maps of the
fiducial trajectory for scenario B
with rvu = 0.72 (b) and
rvu = 0.71 (d) (see Fig. 3b).
Online version in color
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increased from 0.31 to 0.32, the deterministic dynamics
went from quasiperiodic to phase locking (Fig. 3d). In
this case, as in scenario C, stochasticity caused the tra-
jectories to diverge for rvu = 0.31 corresponding to the
quasiperiodic dynamics, but stochasticity was damped when
the deterministic dynamics exhibited phase locking (Fig.
S9). This shows that small amounts of stochasticity can
accumulate, when dynamics are not stable or periodic, and
result in sensitivity to initial conditions that is characteristic
of chaotic dynamics. Indeed, the Lyapunov exponents for
the stochastic version of the model shown in Fig. 5 were
λ = 14.19 (range 14.16 to 14.21) for rvu = 0.71, com-
pared to λ = −0.001 for the deterministic model. The
Lyapunov exponent was also positive but smaller for the
periodic dynamics corresponding to rvu = 0.72, which
showed damped oscillations (Fig. 5a).

Discussion

The current magnitude and extent of coupled human and
natural systems is unprecedented and there is an urgent
need to better understand the consequences of accelerat-
ing human impacts on natural ecosystems and the ser-
vices that they provide (Millennium Ecosystem Assess-
ment 2005). In this study, we considered the reciprocal
interactions between the natural dynamics of parasite pop-
ulations and human intervention in the form of parasite
control. The resulting dynamics were surprisingly complex,
and demonstrate the potential for unexpected behavior to
result in policies that are well-meaning but have unintended
and potentially perverse consequences for the health of
ecosystems.

Implications for sea louse management

In Pacific Canada, salmon farms must treat with chemother-
apeutants when sea louse populations exceed three motile
sea lice per fish, a guideline that is meant to protect juvenile
wild salmon from sea louse infestations during a vulner-
able period of their migration (British Columbia Ministry
of Agriculture and Lands 2005; Brooks 2009). However,
our model showed that strict threshold control of para-
sites according to this policy may lead to asynchronous
or even chaotic dynamics on adjacent farms connected by
dispersal. In practice, whether dynamics are truly chaotic
may not matter; given the timeframe of observations and
management decisions, periodic dynamics may be just as
challenging to predict and control. Increasing connectiv-
ity between populations tended to increase the frequency
of treatments, unless populations were synchronized. Fre-
quent, uncoordinated treatments are a problem because they

may hasten the evolution of sea louse resistance to current
chemotherapeutants by allowing sea lice that are resistant
to treatment to disperse and find mates on nearby, untreated
farms (Aaen et al. 2015). Further, asynchronous parasite
dynamics among farms make it difficult to ensure low
parasite abundance during the wild juvenile salmon migra-
tion. Paradoxically, because threshold treatments tend to
decouple parasite populations when not coordinated, this
well-intended policy could mean high sea louse abundances
on salmon farms along the migration route, transmission to
juvenile salmon (Krkošek et al. 2006; Marty et al. 2010) and
adverse impacts on wild salmon populations (Krkošek et al.
2011; Peacock et al. 2013).

The current treatment threshold policy does reduce louse
abundance on farms, but more coordinated efforts to syn-
chronize the parasite dynamics among farms may reduce
reliance on chemotherapeutants. We found that at low lev-
els of dispersal, the frequency of treatments increased with
increasing connectivity, suggesting that dispersal among
farms hinders control efforts. However, the frequency of
treatments declined substantially when connectivity was
high enough that parasite dynamics were synchronized
between farms (Fig. 4a). In reality, dispersal of sea lice
among farms is likely too low to synchronize parasite
dynamics on adjacent farms by itself (Adams et al 2012;
Foreman et al 2015), although shared environmental effects
may help, see below). But for populations that were weakly
coupled but had similar internal growth rates (e.g., have
a similar number/age of hosts and are exposed to similar
environmental conditions), synchrony could be induced by
either treating populations at the same time (even if one
population had not reached the threshold) or coordinating
stocking and harvest among adjacent farms so that they
start with the same initial conditions. Such strategies may
reduce the potential for the rescue effect in louse popula-
tions on adjacent farms and therefore lower the frequency
of treatments, but require coordinated effort among multi-
ple stakeholders (e.g., different levels of government and
industry). Pest management plans that require this kind of
cooperation have been recommended (e.g., Brooks 2009;
Peacock et al. 2013), but are still not implemented in many
areas, including Pacific Canada.

Model limitations

Our simple model did not consider exogenous forces on the
population dynamics such as variability in growth rates due
to shared environmental conditions. Such forces are likely,
due to the effect of temperature and salinity on settlement
success (Bricknell et al. 2006), developmental rates (Groner
et al. 2014; Stien et al. 2005), and survival (Johnson and
Albright 1991a) of sea lice. Environmental conditions have
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been proposed to result in synchrony of local population
dynamics over wide geographic scales (i.e., Moran effects;
Moran 1953). Indeed, such an effect has been shown in
a variety of systems (e.g., Cheal et al. 2007; Grenfell et.
al 1998). Sea louse populations on farmed salmon show
annual cycles (Marty et al. 2010) that may be driven, in
part, by changes in salinity and/or temperature (Johnson
and Albright 1991b). The relative contributions of dispersal
versus environment in driving synchrony of local popula-
tions is an ongoing question in ecology (Lande et al. 1999),
and sea lice in networks of salmon farms may provide an
ideal model system due to the extensive monitoring of louse
populations and environmental conditions on salmon farms.
These data have been used in statistical analyses aimed at
management applications (e.g., Rogers et al. 2013; Revie et
al. 2003) but could also be useful in answering questions of
general interest in ecology.

Dynamics of coupled populations

There has been considerable theoretical interest in how dis-
persal affects the dynamics of coupled populations (e.g.,
Dey et al. 2014, 2015; Hastings et al. 1993; Kendall
and Fox 1998; Goldwyn and Hastings 2011; Franco and
Ruis-Herrera 2015). Our analysis expands on previous the-
oretical work in several ways. First, we considered control
of populations when a threshold abundance was reached.
Previous work has considered density dependence as part
of the intrinsic dynamics of local populations (e.g., the
Ricker model, Dey et al. 2015; Hastings et al. 1993), or
periodic interventions such as feeding and harvest (e.g.,
Chau 2000). We consider a nonlinear reciprocal interaction
between parasite populations and control intervention that
had not yet been explored, although our approach shares
similarities with work on Adaptive Limiter Control, dis-
cussed below (e.g., Sah et al. 2013). Second, we analyzed
a continuous-time population model that may be more rep-
resentative for some species, but were able to simplify our
analysis by considering a discrete-time return map for the
population density in one patch at the time of treatment
in the other. This dynamical-systems approach has gained
attention recently in the context of peak to peak dynamics
(Rinaldi et al. 2001) and statistical methods for analyzing
time series data (Sugihara et al. 2012), but also has broader
applications for simplifying analyses of continuous-time
models for interacting populations (Schaffer 1985). Finally,
we varied both the internal growth rates and connectivities
in our populations to explore scenarios where growth rates
of the two populations differed and connectivity was not
necessarily reciprocal. Many studies of coupled populations
only consider equal connectivity (although see Dey et al.
2014; Franco and Ruis-Herrera 2015).

Increasing connectivity between two populations sub-
ject to control was expected to increase the frequency
of treatments, but the simple model we developed dis-
played much more complex dynamics. Our results were
consistent with other population models that show high con-
nectivity leads to synchrony of populations while lower
levels of connectivity lead to out-of-phase dynamics (Dey
et al.2014, 2015). If the two populations had different
periods due to unequal growth rates, the dynamics under-
went periodic or quasiperiodic cycles. When dynamics were
periodic, added stochasticity was damped such that the
difference between nearby trajectories remained small.
Hastings (1993) analyzed a coupled discrete logistic model
and also found that the addition of stochasticity resulted in
chaos for parameter values corresponding to a four-point
cycle in the deterministic model, but stable population den-
sities for parameter values corresponding to a two-point
cycle in the deterministic model. This result highlights the
fine line between predictable deterministic dynamics and
chaos (Hastings 1993).

Previous work on threshold interventions in popula-
tion dynamics have incorporated Adaptive Limiter Control
(ALC; e.g., Sah et al. 2013). ALC involves a threshold
intervention as in our model, but works to the opposite
effect: where we consider control of a population when it
goes above a threshold, ALC avoids population crashes by
forcing immigration when the population drops below a
threshold. Despite this difference, high thresholds for ALC
tend to decouple subpopulations in a similar manner to our
strict treatment threshold (Sah et al. 2013). This decoupling
has opposite effects on fluctuations of the metapopulation
depending on the migration rate between subpopulations. At
high migration rates, subpopulations tend to be positively
correlated, such that decoupling due to ALC is effective at
increasing stability of the overall metapopulation. However,
at low migration rates, subpopulations are more likely to be
fluctuating out of phase and therefore ALC exacerbates this
negative synchrony and decreases metapopulation stability.
(Sah et al. 2013) found both theoretical and empirical evi-
dence that these effects of ALC generally act to increase
persistence of populations and metapopulations. Consider-
ing populations of pests and pathogens, persistence is not
the desired outcome, providing an intriguing possibility that
by decoupling populations, threshold effects may actually
hinder eradication unless coordinated.

Conclusion

The complexity of coupled human and natural systems has
gained attention as we recognize and attempt to under-
stand our impact on natural ecosystems. For aquaculture, the
interaction between farm management and natural pathogen
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dynamics, including dispersal among farms, may lead to
unpredictable dynamics that undermine our ability to main-
tain a healthy environment for both farmed and wild
salmon. The successful management of disease in coastal
ecosystems likely requires cooperation among different
companies to synchronize and stabilize pathogen dynam-
ics. This example emphasizes that human-natural cou-
plings cross the boundaries of policy and governance,
and cooperation among stakeholders at different levels
is required to achieve the common goal of healthy and
sustainable ecosystems that can support adaptive human
populations.
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Appendix A: Solution to ODE

The solutions to Eq. 1 are as follows:

u(t) = fu(t, u0, v0)

= c1 exp

[
ruu + rvv + α

2
t

]

+c2 exp

[
ruu + rvv − α

2
t

]
(A.1)

v(t) = fv(t, u0, v0)

= c1

(
rvv − ruu + α

2ruv

)
exp

[
ruu + rvv + α

2
t

]

+c2

(
rvv − ruu − α

2ruv

)
exp

[
ruu + rvv − α

2
t

]
,(A.2)

where

c1 = 2ruvv0 − u0(rvv − ruu − α)

2α
(A.3)

c2 = u0(α + rvv − ruu) − 2ruvv0

2α
(A.4)

α =
√

(ruu − rvv)2 + 4ruvrvu. (A.5)

To get the time of the next treatment given the growth
rates and initial conditions, we first rearrange Eqs. A.1–A.2.
We denote the time of the next treatment of u and v as Tu

and Tv , respectively. The equations for Tu and Tv are the
following:

2αNmax = exp

(
ruu + rvv

2
Tu

)[(
exp

(α

2
Tu

)

− exp

(−α

2
Tu

))
(2ruvv0 + u0(ruu − rvv))

+u0 α

(
exp

(α

2
Tu

)
+ exp

(−α

2
Tu

))]
(A.6)

4αruvNmax = exp

(
ruu + rvv

2
Tv

)
[(2ruvv0 (rvv − ruu)

+4u0 rvuruv)

(
exp

(α

2
Tv

)
−exp

(−α

2
Tv

))

+2ruvv0α

(
exp

(α

2
Tv

)
+exp

(−α

2
Tv

))]
.

(A.7)

In Eqs. A.6–A.7, Tu and Tv cannot be solved for explic-
itly, so we used a numerical root finding algorithm to
determine Tu and Tv .

Appendix B: Development of return map

We used the dynamical system described in Eq. 2 to con-
struct a return map that takes the population density u when
v is treated and returns u the next time v is treated. We
first consider the scenario where u is not treated in between
consecutive treatments of v. We denote the time to the next
treatment of v as Tv0. In this case, the resulting population
density u at the next treatment of v is

φ(u∗) = fu

(
Tv0, u∗, Nmin

)
, (B.1)

where fu is the solutions to Eq. 1, given in Appendix
A. Next, we consider the case where u is treated once in
between treatments of v. This leads to a return map of the
form,

φ(u∗) = fu

(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)
, (B.2)

where Tu0 is the time from the initial treatment of v to
the treatment of u and Tv1 is the subsequent time from the
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treatment of u to the next treatment of v. These two cases
can be combined into a single equation as,

φ(u∗) = H(T̃0) fu

(
Tv0, u∗, Nmin

)
︸ ︷︷ ︸

u not treated

+H(T̃1)
[
1 − H(T̃0)

]
fu

(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

.

(B.3)

We can continue in this way to get the equation that
includes the possibility for u being treated twice in between
treatments of v,

φ(u∗) = H(T̃0) fu

(
Tv0, u∗, Nmin

)
︸ ︷︷ ︸

u not treated

+ H(T̃1)
[
1 − H(T̃0)

]
fu

(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

(B.4)

+ H(T̃2) [1 − H(T̃1)] fu

(
Tv2, Nmin, fv(Tu1, Nmin, fv(Tu0, u

∗, Nmin))
)

︸ ︷︷ ︸
u treated twice

.

By induction, we arrive at the general equation for the
return map, given in Eq. 3:

φ(u∗) = [
H(T̃0)

]
fu

(
Tv0, u∗, Nmin

)
︸ ︷︷ ︸

m=0

+
[ ∞∑

m=1

H(T̃m)

m−1∏
n=0

[1 − H(T̃n)]
]

fu

(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

.

(B.5)

Appendix C: Algorithm describing return map

Because Eqs. A.6–A.7 cannot be solved for Tu and Tv ,
model analysis by the return map involved simulating suc-
cessive treatments until v was treated next. The recursive
algorithm we applied to calculate the population density u

when v was treated next is the following:
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eling parasite dynamics on farmed salmon for precautionary con-
servation management of wild salmon. PLoS ONE 8(4):e60,096.
doi:10.1371/journal.pone.0060096

Sah P, Paul Salve J, Dey S (2013) Stabilizing biological popu-
lations and metapopulations through Adaptive Limiter Control.
J Theor Biol 320:113–23. doi:10.1016/j.jtbi.2012.12.014. http://
www.sciencedirect.com/science/article/pii/S002251931200642X

Samways MJ (1979) Immigration, population growth and mortal-
ity of insects and mites on cassava in Brazil. Bull Entomol Res
69(03):491–505. doi:10.1017/S000748530001899X

Schaffer WM (1985) Order and chaos in ecological systems. Ecol-
ogy 66(1):93–106. http://www.esajournals.org/doi/abs/10.2307/
1941309

Silva A (2003) Morphometric variation among sardine (Sardina
pilchardus) populations from the northeastern Atlantic and the
western Mediterranean. ICES J Mar Sci 3139(03):1352–1360.
doi:10.1016/S1054. http://icesjms.oxfordjournals.org/content/60/
6/1352.short

Sprott J (2003) Chaos and time-series analysis. Oxford University
Press, http://sprott.physics.wisc.edu/chaostsa/

Steen H, Ims RA, Sonerud GA, Steen H (1996) Spatial and tem-
poral patterns of small-rodent population dynamics at a regional
scale. Ecology 77(8):2365–2372. http://www.esajournals.org/doi/
abs/10.2307/2265738

http://dx.doi.org/10.1017/S0025315400051687
http://dx.doi.org/10.1017/S0025315400051687
http://dx.doi.org/10.1038/35038073
http://dx.doi.org/10.1006/tpbi.1998.1365
http://dx.doi.org/10.1006/tpbi.1998.1365
http://dx.doi.org/10.1016/j.prevetmed.2013.03.015
http://www.ncbi.nlm.nih.gov/pubmed/23628338
http://www.ncbi.nlm.nih.gov/pubmed/23628338
http://dx.doi.org/10.1073/pnas.0603525103
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1591297&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1591297&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1591297&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.3354/aei00014
http://www.int-res.com/abstracts/aei/v1/n2/p137-146/
http://www.int-res.com/abstracts/aei/v1/n2/p137-146/
http://dx.doi.org/10.1073/pnas.1101845108
http://www.pnas.org/content/108/35/14700
http://www.pnas.org/content/108/35/14700
http://dx.doi.org/10.1086/303240
http://www.jstor.org/stable/10.1086/303240
http://www.jstor.org/stable/10.1086/303240
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001549
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001549
http://besa.oxfordjournals.org/content/15/3/237
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132516
http://www.annualreviews.org/doi/full/10.1146/annurev.ecolsys.34.011802.132516
http://www.annualreviews.org/doi/full/10.1146/annurev.ecolsys.34.011802.132516
http://www.annualreviews.org/doi/full/10.1146/annurev.ecolsys.34.011802.132516
http://dx.doi.org/10.1126/science.1144004
http://www.ncbi.nlm.nih.gov/pubmed/17872436
http://www.ncbi.nlm.nih.gov/pubmed/17872436
http://dx.doi.org/10.1073/pnas.1009573108
http://www.pnas.org/content/107/52/22599.abstract
http://dx.doi.org/10.1046/j.1461-0248.2003.00545.x
onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2003.00545.x/pdf
onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2003.00545.x/pdf
http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf
http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf
http://www.loc.gov/catdir/toc/ecip0512/2005013229.html
http://dx.doi.org/10.1196/annals.1439.003
http://dx.doi.org/10.1071/ZO9530291
http://www.publish.csiro.au/?paper=ZO9530291
http://www.publish.csiro.au/?paper=ZO9530291
http://dx.doi.org/10.1017/S0021859605005708
http://dx.doi.org/10.1890/12-0519.1
http://www.esajournals.org/doi/abs/10.1890/12-0519.1
http://www.esajournals.org/doi/abs/10.1890/12-0519.1
http://dx.doi.org/10.1002/ps.491
http://onlinelibrary.wiley.com/doi/10.1002/ps.491/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ps.491/abstract
http://dx.doi.org/10.1098/rspb.1995.0184
http://rspb.royalsocietypublishing.org/content/262/1364/113.abstract
http://rspb.royalsocietypublishing.org/content/262/1364/113.abstract
http://onlinelibrary.wiley.com/doi/10.1002/ps.476/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ps.476/abstract
http://www.int-res.com/abstracts/dao/v57/n1-2/p85-95/
http://www.int-res.com/abstracts/dao/v57/n1-2/p85-95/
http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00273.x/full
http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00273.x/full
http://dx.doi.org/10.1371/journal.pone.0060096
http://dx.doi.org/10.1016/j.jtbi.2012.12.014
http://www.sciencedirect.com/science/article/pii/S002251931200642X
http://www.sciencedirect.com/science/article/pii/S002251931200642X
http://dx.doi.org/10.1017/S000748530001899X
http://www.esajournals.org/doi/abs/10.2307/1941309
http://www.esajournals.org/doi/abs/10.2307/1941309
http://dx.doi.org/10.1016/S1054
http://icesjms.oxfordjournals.org/content/60/6/1352.short
http://icesjms.oxfordjournals.org/content/60/6/1352.short
http://sprott.physics.wisc.edu/chaostsa/
http://www.esajournals.org/doi/abs/10.2307/2265738
http://www.esajournals.org/doi/abs/10.2307/2265738


380 Theor Ecol (2016) 9:365–380

Stien A, PA Bjørn, Heuch PA, Elston DA (2005) Population
dynamics of salmon lice Lepeophtheirus salmonis on Atlantic
salmon and sea trout. Mar Ecol Prog Ser 290:263–275.
doi:10.3354/meps290263

Sugihara G, May R, Ye H, Hsieh Ch, Deyle E, Fogarty M, Munch
S (2012) Detecting causality in complex ecosystems. Science
338(6106):496–500. doi:10.1126/science.1227079. http://www.
ncbi.nlm.nih.gov/pubmed/22997134 http://www.sciencemag.org/
content/338/6106/496.abstract

Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015)
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